65 research outputs found

    Parvalbumin Interneurons: All Forest, No Trees

    Get PDF
    There has been a surge of interest in how inhibitory neurons influence the output of local circuits in the brain. In this issue of Neuron, Scholl et al. (2015) provide a compelling argument for what one class of inhibitory neurons actually does

    The Refinement of Ipsilateral Eye Retinotopic Maps Is Increased by Removing the Dominant Contralateral Eye in Adult Mice

    Get PDF
    Background: Shortly after eye opening, initially disorganized visual cortex circuitry is rapidly refined to form smooth retinotopic maps. This process asymptotes long before adulthood, but it is unknown whether further refinement is possible. Prior work from our lab has shown that the retinotopic map of the non-dominant ipsilateral eye develops faster when the dominant contralateral eye is removed. We examined whether input from the contralateral eye might also limit the ultimate refinement of the ipsilateral eye retinotopic map in adults. In addition, we examined whether the increased refinement involved the recruitment of adjacent cortical area. Methodology/Principal Findings: By surgically implanting a chronic optical window over visual cortex in mice, we repeatedly measured the degree of retinotopic map refinement using quantitative intrinsic signal optical imaging over four weeks. We removed the contralateral eye and observed that the retinotopic map for the ipsilateral eye was further refined and the maximum magnitude of response increased. However, these changes were not accompanied by an increase in the area of responsive cortex. Conclusions/Significance: Since the retinotopic map was functionally refined to a greater degree without taking over adjacent cortical area, we conclude that input from the contralateral eye limits the normal refinement of visual cortica

    The Autism Related Protein Contactin-Associated Protein-Like 2 (CNTNAP2) Stabilizes New Spines: An In Vivo Mouse Study.

    Get PDF
    The establishment and maintenance of neuronal circuits depends on tight regulation of synaptic contacts. We hypothesized that CNTNAP2, a protein associated with autism, would play a key role in this process. Indeed, we found that new dendritic spines in mice lacking CNTNAP2 were formed at normal rates, but failed to stabilize. Notably, rates of spine elimination were unaltered, suggesting a specific role for CNTNAP2 in stabilizing new synaptic circuitry

    Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory.

    Get PDF
    Modeling studies suggest that clustered structural plasticity of dendritic spines is an efficient mechanism of information storage in cortical circuits. However, why new clustered spines occur in specific locations and how their formation relates to learning and memory (L&M) remain unclear. Using in vivo two-photon microscopy, we track spine dynamics in retrosplenial cortex before, during, and after two forms of episodic-like learning and find that spine turnover before learning predicts future L&M performance, as well as the localization and rates of spine clustering. Consistent with the idea that these measures are causally related, a genetic manipulation that enhances spine turnover also enhances both L&M and spine clustering. Biophysically inspired modeling suggests turnover increases clustering, network sparsity, and memory capacity. These results support a hotspot model where spine turnover is the driver for localization of clustered spine formation, which serves to modulate network function, thus influencing storage capacity and L&M

    An inhibitory pull-push circuit in frontal cortex.

    Get PDF
    Push-pull is a canonical computation of excitatory cortical circuits. By contrast, we identify a pull-push inhibitory circuit in frontal cortex that originates in vasoactive intestinal polypeptide (VIP)-expressing interneurons. During arousal, VIP cells rapidly and directly inhibit pyramidal neurons; VIP cells also indirectly excite these pyramidal neurons via parallel disinhibition. Thus, arousal exerts a feedback pull-push influence on excitatory neurons-an inversion of the canonical push-pull of feedforward input

    Dynamic Remodeling of Dendritic Arbors in GABAergic Interneurons of Adult Visual Cortex

    Get PDF
    Despite decades of evidence for functional plasticity in the adult brain, the role of structural plasticity in its manifestation remains unclear. To examine the extent of neuronal remodeling that occurs in the brain on a day-to-day basis, we used a multiphoton-based microscopy system for chronic in vivo imaging and reconstruction of entire neurons in the superficial layers of the rodent cerebral cortex. Here we show the first unambiguous evidence (to our knowledge) of dendrite growth and remodeling in adult neurons. Over a period of months, neurons could be seen extending and retracting existing branches, and in rare cases adding new branch tips. Neurons exhibiting dynamic arbor rearrangements were GABA-positive non-pyramidal interneurons, while pyramidal cells remained stable. These results are consistent with the idea that dendritic structural remodeling is a substrate for adult plasticity and they suggest that circuit rearrangement in the adult cortex is restricted by cell type–specific rules

    Parvalbumin Interneurons: All Forest, No Trees

    No full text
    corecore